Anesthetic Issues in Children with Neurologic Diseases

Robert S. Rust, MA, MD Thomas E. Worrell Professor of Epileptology and Neurology Professor of Pediatrics Director of Child Neurology University of Virginia

Nothing to Declare

Generalities

- Common problems in children with various neurologic diseases:
 - Cortical issues (intelligence, behavior, etc.)
 - Visual or hearing disturbances
 - Oropharyngeal, pulmonary mechanical problems
 - Cervical instability or torticollis
 - Reflux
 - Contractures, weakness/hypotonia
 - Movement disorders
 - Seizures and antiseizure medications

Intubation-related risks

Approach to individuals with epilepsy

- Avoid prolonged preoperative fast
- 18+ ASDs—avoid holding doses pre/post
 - Depends on half-time drug elimination
 - Oral with small sip/rectal/IV
 - Anesthetic choice/dose: consider ASD etc. med
- Care with hyperventilation/hypocarbia
 - Reduction of CBF v worsening metab/EEG
 - Care in interpretation of cause or nature of twitching, tonicity, shivering, confusion

Anesthetics with effects on seizure threshold (sometimes...)

- Enflurane
- Etomidate
- Sevoflurane
- Fentanyl
- Ketamine
- Lidocaine
- Methohexital
- Morphine
- Propofol
- Etc.

Proconvulsant

- Proconvulsant
- Proconvulsant
- Pro- or anticonvulsant
- Pro- or anticonvulsant*
- Pro- or anticonvulsant
- Proconvulsant
- Pro- or anticonvulsant
- Pro- or anticonvulsant*
- * Particularly useful treating BDZ-resistant status epilepticus

Receptor trafficking

Inhalational Anesthetics (1)

- Enflurane: *proconvulsant*
 - Organic/inorganic flourinated metabolites
 - No Epilepsy: Facial/appendicular myoclonus
 - No associated convulsive EEG abnormalities
 - Deep levels have been associated with GTC szs
 - *Epilepsy*: concn-related worsening szs + EEG abn
 - HV (to decrease CFB/ICP) worsens enflurane effect
 - DZP, thiopental may *worsen* enflurane effects
 - Nitrous not known to have + or influence
 - Post-op GTC/myoclonic szs may persist for days

Inhalational Anesthetics (2)

- Isoflurane
 - Little proconvulsive--except co-admin of nitrous?)
 - Valuable anticonvulsant effects (esp. BDZ-resistant status)
 - Good choice in status epilepticus
 - Concerns re caspase-3 activation/NMDA-r endocytosis
 - Pertinent to Alzheimer (including Down syndrome-associated and...?
- Desflurane
 - Similar to isoflurane
 - Faster emergence
 - Valuable in individuals with *metabolic diseases* where special dietary frequent accomodations must be made
 - However greater tendency to peri-emergent coughing

Inhalational Anesthetics (3)

Sevoflurane

- Induction-related movements
 - May be non-epileptic
 - Focal or generalized epileptic seizures may occur
 - Children especially vulnerable, epileptic >> normal
 - Especially with rapid induction, higher doses
 - Rapid + controlled HV may provoke in 80% cf 20% without HV
 - May have associated CNS-related autonomic changes
 - Nitrous or bolus MDZ may suppress sevoflurane-related seizures
- Nitrous: Little proconvulsive or anticonvulsive activity
 - Extensive experience, valuable in epilepsy surgery
- Halothane: *anticonvulsive*
 - Except with co-administered nitrous?
 - Transient post-op vertex sharp waves 2-7 days

Barbiturate Anesthetics (1)

- Phenobarbital
 - Very anticonvulsive, high doses well-tolerated
 - Up to at least 120mg/kg over time well tolerated
 - Long duration of effects
 - Loss of effect with receptor trafficking (as with BDZ)
- Pentobarbital
 - Brainstem in addition to cortical anticonvulsive
 - Shorter duration, cardiopulmonary support early
 - Loss of effect with receptor trafficking (as with BDZ)?

Barbiturate Anesthetics (2)

Thiopental

- Powerful anticonvulsive effects in Tx range
 - Valuable for status epilepticus, local anesthetic related szs
 - Probably safe for induction in mitochondrial diseases

Methohexital

- Excitatory during induction:
 - Tremor, muscle twitch, hypertonus, hiccough with nI EEG
- Epilepsy (PC): Szs/EEG abn may occur (IV, IM, rectal admin)
 - Low doses may activate PC (>70% cases?)
 - No such effect in primary generalized epilepsies?
 - High doses—electrocerebral silence possible
- Methohexital suppression test to find TLE focus

Other Anesthetics(1)

- Etomidate
 - Useful in neurological diseases with cardiovascular instability
 - Non-epileptic individuals
 - Longer convulsive phase after electroconvulsive Tx than with propofol
 - Involuntary myoclonic mvts 10-70% of patients
 - » May suggest szs, may be violent
 - » Co-administration opioid or short acting BDZ avoids problem
 - » But: epileptiform in 20% heart valve replacement cases
 - Epileptic individuals
 - Some risk for provocation of focal or secondary GTC szs
 - » 0.2mg/kg sz focus activation (<30s onset)

Other Anesthetics (2)

- Ketamine
 - Epilepsy: 37% risk sz/obtundation 2-4mg/kg IV(focal/2° genI)??
 - Treat with BDZ or barb rather than increasing ketamine dose
 - » Some studies show little ketamine risk in well-treated epilepsy but given alternative agents may be best to avoid if epilepsy.
 - Dissociative state with delirium possible (may suggest "PC Sz")
 - With prolonged use cerebellar injury possible

Propofol

- Cortical depressant for anesthesia/treatment of seizure
 - CNS subcortical excitatory phenomena in10% of patients
 - When used in electroconvulsive Tx shortens convulsive phase
 - Avoid in well-controlled epilepsy (driver's license risk?)
- Status epilepticus: 5-10 mg/kg/hr infusion
 - May bolus with 1.0-3.0 mg/kg over 5 min; *beware hypotension*
 - Titrated to achieve suppression-burst or isoelectric EEG
 - Intubation and pressor support required
 - Central arterial blood pressure monitoring recommended
 - Monitor acid-base balance: at risk for severe metabolic acidosis.
 - Children may be particularly subject to this
 - May wish to replace with other agents once control of SE is achieved.
 - Taper at rates no faster than 5% per hour
- Alternatives:
 - Inhalation anesthesia (isoflurane)

Propofol infusion syndrome (1)

- Rare but may be fatal; critically ill children > adults (21/14 as of 2003)
 - Mostly acute neurological or inflammatory illnesses—receiving catecholamines/steroids as well as longterm high dose propofol.
 - Cardiac failure, rhabdomyolysis, severe metabolic acidosis and renal failure.
 - CNS activation with *↑*catecholamines and glucocorticoids

Vasile et al., Intensive Care Med. 2003 Sep;29(9):1417-25

Propofol infusion syndrome (2)

- Systemic inflammation / cytokine production priming cardiac/ peripheral muscle dysfunction ± necrosis.
 - Potent inhibitor of Complex I of electron chain
 - Impairs free fatty acid utilization: LCFA transport via CPT as well as beta oxidation
 - Mismatch of energy supply and demand
 - Avoid utilization in mitochondrial neurologic disease
 - Avoid prolonged (>48 h) propofol sedation at doses higher than 5 mg/kg/h especially if acute neurological or inflammatory illnesses.
 - In such cases, alternative sedative agents should be considered. If unsuitable, strict monitoring of signs of muscle necrosis advisable.

*Vasile et al., Intensive Care Med. 2003 Sep;29(9):1417-25

A few more things about propofol

- Prolonged infusion-related acid-base disturbances
 - Fever, muscle membrane dysfunction, CK>20,000, occ rhabdomylolysis, some fatalities—especially <20yo
- Movement abnormalities especially in induction phase:
 - May provoke myoclonus in myotonic dystrophy
 - Twitches, athetosis, chorea, dystonia, opisthotonus are also described in individuals who do not have myotonic dystrophy
 - May reappear in postoperative period
- Conscious dental sedation:
 - Even with epilepsy not provocative of seizures
- Bolus anesthetic doses may activate epileptic foci
 - Occ seizure recurrence for up to 23 d postop—metabolite?
 - Cardiac surgery with propofol + calcium + MDZ reduces post-op risk of seizures

Medications said to induce mitochondrial damage (1)

- Alcoholism treatments
- Analgesic/anti-inflammatory
- Anesthetics
- Angina medications
- Antiarrhythmic
- Antibiotics
- Antidepressants
- Antiemetics
- Antipsychotics
- Anxiety medications
- Barbiturates

Disulfiram

Aspirin, acetaminophen, diclofenac, fenoprofen, indomethacin

Isoflurane, halothane, propofol

Perhexiline, amiodarone Diethylaminoethoxyhexesterol

Amiodarone

Tetracycline, antimycin A

Amitriptyline, amoxapine, citalopram fluoxetine

Haloperidol

Chlorpromazine, fluphenazine, *haloperidol*, risperidone, quetiapine, clozapine, olanzapine Alprazolam, diazepam

All barbiturates

Medications said to induce mitochondrial damage (2)

Drug Class

- Cholesterol medications
- Bile acid medications
- Cancer chemotherapeutics N
- Dementia medications
- Diabetes medications
- HIV/AIDS medications
- Epilepsy/Seizure meds
- Mood stabilizers
- Parkinson's meds

Drugs

Statins (atorvastatin, fluvastatin, etc) Cholestyramine, clofibrate, ciprofibrate, etc Mitomycin C, profiromycin, adriamycin Tacrine, Galantamine Metformin, troglitazone, rosiglitazone, etc. Atripla, Combivirm, Emtrivam, etc. Valproic acid Lithium Tolcapone, also Stalevom)

Nitroprusside

- Some cyanide in blood of many individuals:
 - Smoking
 - Industrial exposures
 - Mining wastes
 - Cassava (tapioca)
 - Almonds
 - Apple, apricot pits
 - Spies, wealthy relatives
- Mitochondrial Dx:
 - May wish to use labetolol instead for hypotensive anesthetic approaches

Metabolism of Sodium Nitroprusside

C. elegans mitochondrial diseases

(Hartman et al, 2001)

- Complex I (gas-1 mutation)
 - Hypersensitive to volatile anesthetics
 - Halothane, diethylether, isoflurane, (propofol?)
- Complex II (mev-1 mutation)
 - Hypersensitivity to oxidative damage/hypermutability
 - Paraquat-induced free radicals or hyperoxia
- Either: incr free-radical sensitivity (↓ubiquinone)

Haloperidol v Complex I

Antiemetics

- Haloperidol effects on Complex I
- Movement disorders
 - May resemble seizures
 - Produce wasteful energy expenditure
 - Esp. Dopamine antagonists
 - Extrapyramidal effects, e.g. dystonia
 - Phenothiazines (prochlorperazine)
 - Butyrophenones (droperidol)

Muscle relaxants

- Hepatic enzyme inducing anti-Sz meds
 - Lower than expected duration of livermetabolized muscle relaxants
 - The effect may be marked
 - Esp. Aminosteroidal compounds
 - Vecuronium, Pancuronium less so with rocuronium)
 - Not benzylisoquinolinium compounds
 - Atracurium, mivacurium

Leigh Disease

(Subacute necrotizing encephalomyelopathy)

- AR: \U004PDH complex and electron chain
- Weakness, Szs, ataxia, ophthalmoplegia
- Progressive symmetric necrosis BG, brainstem, periacqueductal gray

Leigh Disease Anesthetic Considerations*

- Avoid stress that may *fenergy* demand
 - No fasting interval >8 hours
 - Avoid/treat *suspected* infection, fever, acidemia (no lactated fluids)
 - Avoid ↓glucose, hypoxia, hypercarbia, cardiomyopathy
 - Assure optimal pulmonary function at time of surgery
 - Leigh disease probably not associated with MHyperthermia
- Barbs and volatile anesthetics may compromise mitochondrial respiratory function—thiopental induction may be safe
 - Be cautious with succinylcholine (*†*K+?), rocuronium, atracurium
 - Avoid halothane, propofol, nitroprusside, chloral hydrate, BDZs
 - Avoid narcotics--clonazepam for postoperative pain control

*Baum and O'Flaherty 2007; Shear and Tobias Paed Anaesth 14:792, 2004

Malignant Hyperthermia (1)

- Inherited myopathy-related vulnerability

 Muscle constitutes 40% of body weight!
- Volatile anesthetics or succinylcholine
 Other stresses may contribute to vulnerability
- MH mortality formerly 70%

 Dantrolene (RyR1 receptor inhibitor) with supportive care has reduced mortality to 5%

Malignant Hyperthermia (2)

- Classic: AD myopathic ryanodine receptor (RyR1) (30+ mutations)
 - Abnormal caffeine-halothane muscle contraction test (MCT)
 Cause of trismus/generalized rigidity
 - MCT positive patients tolerate anesthetic challenges

 - Sarcoplasmic reticular calcium release
 - **Control** of Abn calcium fluxes produces

 - Differs from myopathic membrane leaks *without* compensatory response
 - Child > adult susceptibility
 - any time during/shortly after anesthetic

Malignant Hyperthermia (3)

- Variant: rhabdomyelitic ↑K+, CK, Myoglobin
 - 50% Co-occurs in setting of RyR1 hyperthermia/abnI MCT
 - 50% occurs in isolation where RyR1 and MCT are normal
 - Fever of later onset than true malignant hyperthermia
 - Especially myopathies with membrane breakdown
 - Rapid occurrence after succinylcholine bolus
 - » Contraindicated in myopathic patients
 - May occur with volatile anesthetics (slower onset)
 - Best approach if risk:
 - » Nitrous + IV opiates/sedative, propofol maintenance

MH-associated conditions

- King-Denborough Syndrome
 - Ptosis, strabismus, kyphosis, cryptorchid, short
- Succinylcholine induced trismus
 - Most children have this but subclinical in 95%
 - Small number may manifest "jaws of steel" pheonomenon
- SCN4A-related ↑K+ periodic paralysis (17Q)
 - Also K+ aggravated myotonia, paramyotonia congenita
- Central Core Disease
- Duchenne / Becker dystrophinopathies

Central Core Disease (19q13.1=RyR1 gene locus)

- AD congenital myopathy
 - Mandibular hypoplasia, short neck
 - Contractures
 - Proximal muscle weakness
 - Non- or slowly progressive (19q13.1)
 - Ryanodine receptor-1 Ca channel gene: "true" RyR1 MH
 - Abnl mitochondria/sarcoplasmic reticulum
 - Loss of central skeletal muscle fibers
 - †Type 1 muscle fiber calcium
 - Abnl muscle contraction testing

Duchenne dystrophinopathy

- X-linked boys
 - Membrane instability
 - Calcium leakage
 - Inflammatory fibrosis
- ±Congenital adrenal hypoplasia
- Abnl ECG in 90%
 - Tall R to right, deep Q to left
- Dilated cardiomyopathy
 - Severity many differ from striated muscle
 - Cardiomyopathy in adult female carriers

Duchenne dystrophinopathy Anesthetic considerations

- Acute rhabdomyolysis ± hyperkalemia
 - Not "true" (RyR1-related) malignant hyperthermia
 - - Pre-Dx occurrence led to succinylcholine warning for children
 - Multilead ECG monitoring important even for biopsy

 - Late DMD: fibrotic heart block
 - Inhalation anesthetics sometimes cause similar problems:
 - Halothane, isoflurane, enflurane, sevoflurane
 - May be latency of several hours for myoglobinuria—especially if muscle very fibrotic;
 - Occasionally similar picture seen in Becker's
 - Don't neglect possible adrenal insufficiency

Myotubular (Centrotubular) Myopathy Anesthetic considerations

- X-linked (myotubularin)
 - Unless ventilated usually fatal in infants AR (infantile) or AD (adult) varieties
 - Much less MH risk than central core
 - ±hyperkalemia to succinylcholine
 - \downarrow swallow, aspiration risk
 - Low risk nondepolarizing agents
 - may not need: muscles markedly weak

--Pierson et al, J Neuropathy: 2006

Nemaline Rod Myopathy

- Three clinically similar types:
 - Type 1 (AD: tropomyosin-3)
 - Type 2 (AR: nebulin)
 - Type 3: (AD: alpha-actin 1)
- Subsarcolemmal rods of fasttwitch fibers (Z-disc derived)
- Variable axioproximal weakness
- ± faciopharyngeal/distal limbs
- ± cardiomyopathy (rare)

Nemaline Rod Myopathy Anesthetic considerations*

- Micrognathia/malocclusion:
 - Laryngoscopy/tracheal intubation difficulties
 - Aspiration risk
- Pulmonary > cardiac risk
 - May require prolonged postoperative ventilation
 - Postoperative pain worsens breathing
 - No reports of malignant hyperthermia or succinylcholinerelated hyperkalemia (but little information available)
- High level spinal anesthesia may be risky
- Muscle relaxants may not be necessary (weak)
 - ...and may be risky

*Cunliffe and Burrows, Can Anaesth Soc J 1985

Approach to anesthesiological issues in muscle disease (CN)

- Tell your patients to inform the anesthesiologist they have heritable muscle disease
 - Especially important in the emergency room
- Rely on the anesthesiologist to know what to do if a complication rhabdomyolysis, MH, postoperative weakness) develops
 - Also rely on the ER anesthesiologist to enforce a sensible approach to anesthetic or paralytic medications in order to obtain scans—which are usually beside the point in evaluation and treatment of status epilepticus

Joubert Syndrome

- AR, severe psychomotor delay
- Infantile nystagmus, ataxia
- Tachypnea/panting/apnea
 - Improves with development or caffeine
 - Apnea may entail cardiac arrest
- Various oropharyngeal abnormalities
- Occipital myelomeningocele sometimes
 - May also have caudal epidural deformation
- Characteristic scan:
 - Cerebellar vermal dysplasia/agenesis
 - "Molar tooth" deformity of peduncles
 - Lg 4th ventricle "batwing" or "umbrella"
 - Agenesis corpus callosum

Joubert Syndrome Anesthetic considerations*

- Direct laryngoscopy may be difficult
 - Micrognathia, large tongue, short/stiff neck, epiglottic deformities, etc.
- Apneas usually 15 secs or so duration:
 - Nitrous oxide, opioids, etc. may prolong these for as much as several hours postoperatively
 - Regional anaesthesia recommended if possible
 - Caudal epidural anesthesia may be challenging but spinal anesthesia may prove useful
 - IV propofol has been used uneventfully
- Improves after infancy or with caffeine

*Vodopich and Gordon, 2004

Central hypoventilation syndrome (Ondine's Curse)

- AR/AD* (PHOX2B etc. genes)
 - Usually neonatal onset
 - May be have low tone, somnolence
 - Mile to moderate developmental delay
 - Apnea occurs in non-REM sleep
 - » Anesthetics, narcotics may \uparrow apnea
 - May have cardiac arrhythmias
 - SIADH-related risk for hyponatremic seizures
 - Neuroblastoma or ganglioneuroma in some
 - Hirschsprung disease in 50%: aspiration risk
 - » Suggests neural crest migration disorder
 - Tracheostomy, PPV in sleep
 - Low CO2 responsiveness—O₂ may provoke apnea

SMARD1 (SMA with respiratory disease)

- AR (11q13-q21/IGHMBP2 gene defects in some)
 - IGHMBP2 mutationin some—resembles SMN1 protein
- Completely normal CNS function
- May present in infancy resembling infantile GBS
- Progressive untreatable distal → central peripheral and diaphragmatic/respiratory muscle paralysis
- Large myelinated peripheral nerve abns in some

SMARD1

(SMA with respiratory disease: Distal HMN VI)

- Ethical issues resembling those of respiratory failure in Duchenne muscular dystrophy
- Without breathing support death <1yo

 After intubation total ventilatory dependency, survival for decades possible

Approaches: severe breathing paralysis

- Maintain lung capacity
 - Stack breathing, etc.
- Flu prophylaxis, viral precautions
- Mucolytics, steroids, bronchodilators??
- Incentive spirometry, breath stacking early
- Aerosolyzed nebulizers
- Cough inexsufflator
- Antibiotics *if secondary* bacterial pneumonia
- BiPAP if VC falls below 40%

BiPAP

Generalities concerning neurometabolic diseases

- Things that may be required:
 - Continuation of dietary restrictions if needed
 - Avoidance of hypoglycemia
 - Avoidance of catabolic state (e.g. PKU)
 - Avoidance of GI protein load (e.g. blood)
 - Avoidance of hemolysis (e.g.PGK deficiency)
 - Awareness of cardiac status (e.g. Pompe, DMD)
 - Avoidance of rhabdomyolysis
 - Fluid titrations if renal disease

Phenylketonuria Anesthetic considerations

- Must continue PA restriction perioperatively
 - If untreated:
 - Vomiting risk
 - Megaloblastic anemia?
- Avoid prolonged fast
- Anesthetics
 - Avoid proconvulsants
 - Antiseizure meds v anesthetics
 - Nitrous oxide inactivation of b12dependant methionine synthase→post-op paraparesis?

The enzyme phenylalanine hydroxylase converts the amino acid phenylalanine to tyrosine.

Phenylketonuria

• AR chromosome 12

- ↓phenylalanine hydroxylase *or*
- ↓tetrahydrobiopterin in 1-2% *
- 1/10,000 US / 1/2600 Turkey
- Heterozygosity v mycotoxins
- Rx: restrict phenylalanine
 - Protein restriction
 - Doesn't work if BH4 deficiency
 - May develop 2○ ↓B12
- If untreated:
 - Musty odor
 - Blue eyes/light hair/exczema
 - MR, vomiting episodes, szs
 - Spasticity, PD (if ↓BH4)

The enzyme phenylalanine hydroxylase converts the amino acid phenylalanine to tyrosine.

Maple syrup urine disease (AR)

- AR—BCKAD genes, chromosome 19
 - Mitochondrial branched-chain keto acid DH
 - Some thiamine-responsive forms
 - Maple syrup: isoleucine ketoadduct (ear/navel)
 - Untreated: severe encephalopathy (Guthrie patch!)
- Decompensation:
 - Surgical stress / intercurrent illness / fast
 - Ataxia, lethargy, coma, cerebral edema, apnea, opisthotonus
 - Pancreatitis risk

Maple Syrup Urine Disease

Maple Syrup Urine Disease

Maple Syrup Urine Disease

Anesthetic Considerations

- No prolonged fasting (pre-, intra- or postop)
 - Risks of hypoglycemia, ketoacidemia
 - Associated opisthotonus, focal dystonia may occur
 - 1/3 of daily dose dietary AA supplement just prior to surgery post-operatively IV supplementation
- IV fluids with glucose, fat emulsion
 - Hypertonic glucose may $\uparrow CO_2$ and provoke NorEpi release
- Risk for cerebral edema if overhydrate
 - Especially in older patients
- Orogastric/throat packs for oral/GI blood
 - Excess protein load→metabolic failure

A UVA Colleague has written:

SECOND EDITION

VICTOR C. BAUM Jennifer E. O'Flaherty

> Lippincott Williams & Wilkins a Within Reservation